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Abstract — The perfectly matched layer (PML) boundary
condition is employed in conjunction with the 3D finite-
difference frequency-demain method (FDFD) for S parame-
ter calculation of microwave devices. We find a residual
reflection error, which is related only to discretization at the
PML interface. The paper presents a systematic investigation
of this parasitic effect and its origin.

I. INTRODUCTION

A variety of absorbing boundary conditions is available
for electromagnetic simulation using the finite-difference
(FD) or the finite-element (FE) methods. Among these,
the Perfectly Matched Layer (PML) proved to be the most
powerful formulation so far. Two types of PML are to be
distinguished: The split-field formulation, introduced by
Berenger [1], and the anisotropic-material based descrip-
tion by Sacksetal. [2]. The anisotropic-material PML
formulation offers the special advantage that it can be
implemented easily in frequency-domain FD and FE codes
and preserves consistency of Maxwellian equations.

The PML formulations and their properties have been
the subject of numerous publications (e.g.[3],[4L[5]).
Regarding the finite-difference method, however, research
focused on the time-domain scheme (FDTD) and only
little information is available for the frequency domain
(FDFD). Moreover, application of the PML concept in
advanced simulation problems requires a detailed knowl-
edge of numerical artifacts and limitations. This is the
background for the paper presented here. The objective is
to discuss the accuracy limitations when applying the
PML in three-dimensional finite-difference frequency-
domain (FDFD) simulations. Since the underlying scheme
is the same for FDTD and FDFD, the results provide in-
sights into the time-domain behavior as well.

II. IMPLEMENTATION OF PML INTO FDFD

The FDFD method is based on the discrete integral form
of the Maxwellian equations applied to each mesh cell
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The PML formulation chosen is based on the well-
known uniaxial permittivity and permeability tensors, [€]
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and [y], proposed by Sacks et al. [2]. The tensor coeffi-
cients N=1—x / (o &) introduce a conductivity given by

x(z)= Kmax[z—dzo )",with K max =M€—O-L‘Q'IH[L], 2

2d T

for each PM-layer, where n denotes the order of the pro-
file, d represents the thickness of the PML and ry, the
nominal reflection of the PML region.

III. CODE VERIFICATION: CALCULATION OF A
DIELECTRIC LOADED WAVEGUIDE

As a first test of the 3D PML implementation, a
waveguide loaded with a dielectric block, according to [5],
is calculated (see in Fig. 1).
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Fig. 1.  Perspective view of the structure under consideration:
rectangular waveguide (cross section is 20x10mm?) loaded with
a dielectric block (8.88x3.99x8.0 mm®) with relative permittivity

£=6.

Two types of simulations were performed: Using one
port (port 1 in Fig. 1) and terminating the waveguide with
PML and, to get a reference, substituting the PML by a
second port, which leads to an ideal reflection-free termi-
nation.

For FDFD calculations a mesh of 11x18x24 cells for the
two-port reference and 11x18%29 cells for the PML calcu-
lation, respectively, is used. The resulting input reflection
Si is plotted in Fig. 2

The agreement between two-port and PML data is ex-
cellent. Furthermore, the values correspond to those given
in [5]. The PML consists of only five layers, with a chosen
nominal reflection coefficient of 0.5% and a constant
conductivity profile. Hence, small deviations between the
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two-port and the PML results have to be expected. In
order to explore this in more detail, we used modifications
of the PML, varying the number of layers, the conductiv-
ity profile, and the theoretical reflection coefficient.
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Fig.2  Input reflection Sy, of the dielectric-loaded waveguide

against frequency; FDFD data using either two ports (lines) or
five cells of PML (symbols).

- As a point of special interest, the resonance frequency
(around 11GHz) was investigated. The results can be
summarized as follows: Improving PML properties re-
duces reflections S;;, but a lower limit around —50dB is
observed. Interestingly, we obtain a similar level for vari-
ous other structures, including planar transmission-lines.

In order to have a closer look on this accuracy limitation
a simple test structure is treated in the next section.

IV. TEST STRUCTURE FOR REFLECTION ERROR

In order to avoid all side effects we looked for a test
structure, most simple but nevertheless showing the resid-
ual reflections we want to study. We find a one-port paral-
lel-plate line (PPL) structure to be most suitable.
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Fig.3  Test structure for residual reflection errors: parallel-
plate waveguide with PML section at the end. The structure is
treated either as one-port waveguide, with an electric wall termi-
nating the PML region, or as two-port waveguide.

In the back section, the PPL is filled with PML material,
as shown in Fig. 3. The waveguide geometry is xXyxz =
Ix1x6mm® (1x1x4.8mm’ for the fully PML filled case,
respectively). We apply an equidistant mesh of 12x22x21
cells (12x22x17 cells for the fully PML case). The PML
has on overall thickness of 4.8mm, corresponding to 16
cells. The extension of one z cell is 0.3mm, corresponding
to A/13 at the highest frequency (75 GHz).

The advantage of this simple structure is that the fields
are 1D, which excludes possible x,y-discretization errors
and, furthermore, allows validation by a Mathematica
routine. We did not detect, however, remarkable differ-
ences between this 1D solution and our 3D FDFD code for
any of the simulations.

Fig, 4 presents the results for increasing nominal PML
reflection ry,
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Fig.4  Input reflection S,, of the 1D parallel-plate waveguide
of Fig. 3: comparison between results for the waveguide being
partly filled with PML (symbols) and results for the waveguide

being completely filled with PML material (lines); the parameter
1y, refers to the PML nominal reflection coefficient.

First, the one-port structure is studied using an electric
wall to terminate the PML area. This corresponds to the
practical case where the PML is applied to replace an open
boundary. As can be seen from Fig. 4 (symbols), reducing
the nominal reflection ry, leads to lower actual reflection,
as long as the resulting S;; magnitude is larger than about
—50 dB. Further reduction of ry does not improve reflec-
tion.

In order to check the PML itself, another calculation is
done, filling the waveguide with PML completely (see
Fig. 4 (solid curves)). Although all PML parameter are
unchanged, now the reflection values reach the chosen
nominal ry, values, for all frequencies.

In a further investigation, we changed the structure by
replacing the electric wall by a second port, thus eliminat-
ing any reflections at this boundary. The resulting S,
values are plotted in Fig. 5 (lines).
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Fig. 5  Input reflection S;; of the partly PML-filled waveguide

according to Fig. 3; comparison of results using the one-port

structure with an electric (symbols) and of the two-port case
(lines), where the electric wall is replaced by a second port.

Although one would expect zero reflections, as the PML
impedance is inherently equal to that of the air-filled sec-
tion (Zpmr=Zy), there are distinct reflections, which de-
pend on frequency as well as on the reflection coefficient

~ chosen. These residual reflections decrease with growing
T, i.€., With decreasing PML conductivity. Moreover, the
two-port calculation of a completely PML filled
waveguide results in S;,=0, for all frequencies and ry
values.

From these findings one concludes that the observed re-
flections are caused neither by the PML nor by numerical
dispersion, but only by the transition plane between air
and PML. This corresponds to initial observations by
Berenger [6] using FDTD in the split-field formulation,
but can now be investigated more detailed in the fre-
quency domain.

Regarding Fig. 4, we actually have a point, where the
computed reflections overcome the nominal value ry,
which is somewhere at S,;=0.01, i.e., —40dB. Given a
constant conductivity profile, this level can only be
changed by refining the mesh. Therefore, looking for a
parameter that allows further reduction of S,;, the influ-
ence of the conductivity profile is studied in the next sec-
tion.

V. INFLUENCE OF CONDUCTIVITY PROFILE

As suggested in many papers on PML in FDTD, we ap-
plied various conductivity profiles in order to check the
influence of this parameter on accuracy limitation. Fig. 6
presents the results for different profiles, ranging from a
constant profile (n=0) to an n=5 characteristic. The nomi-
nal PML reflection is fixed at ry,=0.0001. Because of this
low value, the data for the different PML terminations
(electric wall or second port) do not differ significantly.
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Fig.6 Input reflection S;; of the partly PML-filled
waveguide according to Fig. 3; one-port (symbols) and two-port
cases (lines), using different conductivity profiles (n=0,1,...,5).

Evaluating the results for different exponents n one
finds that n-values around 3 yield optimum broadband
performance, which is in line with previous investigations
on FDTD. But, aithough the grading leads to an improve-
ment of the reflective behavior, it is not possible to reach
the desired nominal value ry over the given frequency
range. That behavior is different from some published
FDTD results (e.g. [4]).

Obviously, the transition air-PML puts a constraint on
the minimum values for S;;. The question is, whether the
parasitic reflections are due to PML-specific characteris-
tics or whether one is dealing with a more general FD
phenomenon here. This is clarified in the next section.

VI. DEPENDENCE ON DISCRETIZATION

As the last remaining parameter to be investigated, the
discretization in z-direction is varied. Fig. 7 provides the
results.

0.01f—~S11 (two ports),
—O=S11 (one port)
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Fig.7  Input reflection S, of a partly PML filled waveguide
according to Fig. 3 as a function of mesh size Az, results for both
one-port and two-port case (ry=0.0001, overall length of PML
unchanged for all cell sizes, /~10GHz.).

The residual reflection level scales with Az® and con-
verges to the limits as expected, i.e. S;; — 0 for the two-
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port, and S;; — 0.0001 = ry, for the one-port case. In other
words, increased spatial resolution improves description of
the PML interface thus reducing residual reflections.

VII. ANALYTIC DESCRIPTION

The PML material involves two peculiarities of interest
here: the presence of both electric and magnetic losses;
which is an artificial setting, and a change of both permit-
tivity and permeability at the interface, which can occur
for physical structures as well.

In order to check this, the simplest case of a discontinu-
ity in both €, and p, (both of them being purely real) is
considered. We again use the parallel-plate waveguide of
Fig. 3, but replacing the former PML area by a material
with real permittivity and permeability values of
€=l=4.0. Thus, the characteristic impedance remains
unchanged, we have zero reflection theoretically, and any
reflections observed can be attributed to the interface.

Tab. I presents the results of the FDFD calculation. Re-
flections in the range -30..-50 dB are observed, also for
the non-PML substrates.

fIGHz | 1 I 10 ] 25
Partly substrate-filled parallel plate waveguide (e11,=4.0) :
S1: (FDFD) | 0.000037 0.00374 0.02446
Sy (analyt) | 0.000037 0.00371 0.02316
Partly PML-filled parallel plate waveguide (r;=0.0001):

Si; (FDFD) 0.00513 0.00560 0.00764
Sy (analyt.) 0.00518 0.00565 0.00767
Table I Reflection coefficient of the structure in Fig. 3, with

PML and with PML region replaced by lossless substrate
(&=1,=4.0): FDFD results and analytical model of eqn. (3).

We conclude from this that residual reflections are not a
PML-inherent effect but related to the simultaneous
change of € and 4, which also occur at the interface be-
tween PML and air (and PML sections of different con-
ductivity). The principal reason is known. It is the stag-
gered grid of the Yee scheme. Usually, the electric field
grid is used to formulate the equations and to define the
material properties, which can lead to accuracy problems
when including steps in permeability, which basically is
defined within the staggered magnetic cells.

As result of a systematic investigation we find empiri-
cally that the following formula describes the observed
reflection errors with good accuracy:

2
%(0211050(921) (53 —1)

with g, to be replaced by the complex term €, — jx/(0€g)
for the PML case. As can be seen from the data in Tab. I,

Su= ) (3)

the residual reflections caused by the interface can be
estimated with excellent accuracy. Hence eqn. (3) pro-
vides a helpful tool for the practitioner in the field how to
choose discretization and PML parameters in order to
meet a desired maximum level of reflection errors. Further
work is in progress, to develop PMLs optimized with
regard to the theoretical reflection coefficient and the
given reflection at the interface.

VIII. CONCLUSIONS

Our results on the PML implementation into the 3D-
FDFD method can be summarized as follows: Using the
anisotropic PML formulation one achieves reflection er-
rors below -40...-50dB, which is sufficient for most prac-
tical situations.

But, this value represents a lower limit that cannot be
overcome simply by varying the common PML parame-
ters, i.e., nominal reflection factor, number of layers, and
conductivity profile. The only way to reduce the reflection
error is to refine discretization. This, however, is computa-
tionally expensive.

A simple test structure is used to explore PML accuracy
in detail. We find that the reflections originate at the inter-
face between PML and non-PML area, which involves a
discontinuity in both complex € and p. This causes prob-
lems with regard to the staggered grid.

An estimation formula, valid for real and complex im-
pedance steps, is found, to predict the magnitude of these
reflections. Further work is in progress to find optimum
constitutive parameters for the FDFD PML.
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