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Abstract - The perfectly matched layer (PML) boundary 
condition is employed in conjunction with the 3D finite- 
difference frequency-domain method (FDFD) for S parame- 
ter calculation of microwave devices. We find a residual 
reflection error, which is related only to discretization at the 
PML interface. The paper presents a systematic investigation 
of this parasitic effect and its origin. 

I. INTRODUCTION 

A variety of absorbing boundary conditions is available 
for electromagnetic simulation using the finite-difference 
(FD) or the finite-element (FE) methods. Among these, 
the Perfectly Matched Layer (PML) proved to be the most 
powerful formulation so far. Two types of PML are to be 
distinguished: The split-field formulation, introduced by 
Berenger [I], and the anisotropic-material based descrip- 
tion by Sacks et al. [2]. The anisotropic-material PML 
formulation offers the special advantage that it can be 
implemented easily in frequency-domain FD and FE codes 
and preserves consistency of Maxwellian equations. 

The PML formulations and their properties have been 
the subject of numerous publications (e.g.[3],[4],[5]). 
Regarding the finite-difference method, however, research 
focused on the time-domain scheme (FDTD) and only 
little information is available for the frequency domain 
(FDFD). Moreover, application of the PML concept in 
advanced simulation problems requires a detailed knowl- 
edge of numerical artifacts and limitations. This is the 
background for the paper presented here. The objective is 
to discuss the accuracy limitations when applying the 
PML in three-dimensional finite-difference fiequency- 
domain (FDFD) simulations. Since the underlying scheme 
is the same for FDTD and FDFD, the results provide in- 
sights into the time-domain behavior as well. 

II. IMPLEMENTATIONOF PML INTO FDFD 

The FDFD method is based on the discrete integral form 
of the Maxwellian equations applied to each mesh cell 

The PML formulation chosen is based on the well- 
known uniaxial permittivity and permeability tensors, [d 

and [B], proposed by Sacks et al. [2]. The tensor coeffi- 
cients ‘Tj=l-jK / (w EQ) introduce a conductivity given by 

, with Km = (n+~dEoco In + , (2) [ 1 f 
for each PM-layer, where n denotes the order of the pro- 

tile, d represents the thickness of the PML and rfh the 
nominal reflection of the PML region. 

III. CODEVERIFICATION: CALCULATIONOFA 
DIELECTRICLOADEDWAVEGUIDE 

As a first test of the 3D PML implementation, a 
waveguide loaded with a dielectric block, according to [S], 
is calculated (see in Fig. 1). 

port1 
dielectric block 

Fig. 1. Perspective view of the structure under consideration: 
rectangular waveguide (cross section is 20x10mm2) loaded with 
a dielectric block (8.88x3.99x8.0 mm3) with relative permittivity 
~.,=6. 

Two types of simulations were performed: Using one 
port (port 1 in Fig. 1) and terminating the waveguide with 
PML and, to get a reference, substituting the PML by a 
second port, which leads to an ideal reflection-free termi- 
nation. 

For FDFD calculations a mesh of 11x18~24 cells for the 
two-port reference and 11 xl 8x29 cells for the PML calcu- 
lation, respectively, is used. The resulting input reflection 
S,, 1s plotted in Fig. 2 

The agreement between two-port and PML data is ex- 
cellent. Furthermore, the values correspond to those given 
in [5]. The PML consists of only five layers, with a chosen 
nominal reflection coefficient of 0.5% and a constant 
conductivity profile. Hence, small deviations between the 
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two-port and the PML results have to be expected. In 
order to explore this in more detail, we used modifications, 
of the PML, varying the number of layers, the conductiv- 
ity profile, and the theoretical reflection coefficient. 
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Fig. 2 Input reflection SII of the dielectric-loaded waveguide 
against frequency; FDFD data using either two ports (lines) or 
five cells of PML (symbols). 

As a point of special interest, the resonance frequency 
(around 11GHz) was investigated. The results can be 
summarized as follows: Improving PML properties re- 
duces reflections S,,, but a lower limit around -50dB is 
observed. Interestingly, we obtain a similar level for vari- 
ous other structures, including planar transmission-lines. 

In order to have a closer look on this accuracy limitation 
a simple test structure is treated in the next section. 

IV. TESTSTRUCTURE FORREFLECTIONERFCOR 

In order to avoid all side effects we looked for a test 
structure, most simple but nevertheless showing the resid- 

ual reflections we want to study. We find a one-port paral- 
lel-plate line (PPL) structure to be most suitable. 

Fig. 3 Test structure for residual reflection errors: parallel- 
plate waveguide with PML section at the end. The structure is 
treated either as one-port waveguide, with an electric wall termi- 
nating the PML region, or as two-port waveguide. 
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In the back section, the PPL is filled with PML material, 
as shown in Fig. 3. The waveguide geometry is XX~XZ = 
1x1x6mm3 (1x1x4.8mm3 for the fully PML filled case, 
respectively). We apply an equidistant mesh of 12~22x21 
cells (12~22x17 cells for the fully PML case). The PML 
has on overall thickness of 4.8mm, corresponding to 16 
cells. The extension of one z cell is 0.3mm, corresponding 
to W13 at the highest frequency (75 GHz). 

The advantage of this simple structure is that the fields 
are ID, which excludes possible x,y-discretization errors 
and, furthermore, allows validation by a Mathematics 
routine. We did not detect, however, remarkable differ- 
ences between this 1D solution and our 3D FDFD code for 
any of the simulations. 

Fig, 4 presents the results for increasing nominal PML 
reflection rth. 
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Fig. 4 Input reflection S,, of the 1D parallel-plate waveguide 
of Fig. 3: comparison between results for the waveguide being 
partly filled with PML (symbols) and results for the waveguide 
being completely filled with PML material (lines); the parameter 
r,, refers to the PhIL nominal reflection coeffkient. 

First, the one-port structure is studied using an electric 
wall to terminate the PML area. This corresponds to the 
practical case where the PML is applied to replace an open 
boundary. As can be seen from Fig. 4 (symbols), reducing 
the nominal reflection rth leads to lower actual reflection, 
as long as the resulting Sir magnitude is larger than about 
-50 dB. Further reduction of rir, does not improve reflec- 
tion. 

In order to check the PML itself, another calculation is 
done, filling the waveguide with PML completely (see 
Fig. 4 (solid curves)). Although all PML parameter are 
unchanged, now the reflection values reach the chosen 
nominal rth values, for all frequencies. 

In a further investigation, we changed the structure by 
replacing the electric wall by a second port, thus eliminat- 
ing any reflections at this boundary. The resulting Sri 
values are plotted in Fig. 5 (lines). 
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Fig. 5 Input reflection SI r of the partly PML-filled waveguide 
according to Fig. 3; comparison of results using the one-port 
structure with an electric (symbols) and of the two-port case 
(lines), where the electric wall is replaced by a second port. 
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Fig. 6 Input reflection Sri of the partly PML-tilled 
waveguide according to Fig. 3; one-port (symbols) and two-port 
cases (lines), using different conductivity profiles (n=O, 1,. . .,5). 

Although one would expect zero reflections, as the PML 
impedance is inherently equal to that of the air-filled sec- 
tion (ZPML=ZO), there are distinct reflections, which de- 
pend on frequency as well as on the reflection coefficient 
chosen. These residual reflections decrease with growing 
rth, i.e., with decreasing PML conductivity. Moreover, the 
two-port calculation of a completely PML filled 
waveguide results in Sri-O, for all frequencies and rrh 
values. 

From these findings one concludes that the observed re- 
flections are caused neither by the PML nor by numerical 
dispersion, but only by the transition plane between air 
and PML. This corresponds to initial observations by 
Berenger [6] using FDTD in the split-field formulation, 
but can now be investigated more detailed in the fre- 
quency domain. 

Regarding Fig. 4, we actually have a point, where the 
computed reflections overcome the nominal Value rth, 
which is somewhere at Srr=O.Ol, i.e., 40dB. Given a 
constant conductivity profile, this level can only be 
changed by refining the mesh. Therefore, looking for a 
parameter that allows further reduction of Srr, the influ- 
ence of the conductivity profile is studied in the next sec- 
tion. 

V. INFLUENCEOF CONDUCTIVITYPROFILE 

As suggested in many papers on PML in FDTD, we ap- 
plied various conductivity profiles in order to check the 
influence of this parameter on accuracy limitation. Fig. 6 
presents the results for different profiles, ranging from a 
constant profile (n=O) to an n=5 characteristic. The nomi- 
nal PML reflection is fixed at r~~=O.oOol. Because of this 
low value, the data for the different PML terminations 
(electric wall or second port) do not differ significantly. 

Evaluating the results for different exponents n one 
finds that n-values around 3 yield optimum broadband 
performance, which is in line with previous investigations 
on FDTD. But, although the grading leads to an improve- 
ment of the reflective behavior, it is not possible to reach 
the desired nominal value rth over the given frequency 
range. That behavior is different from some published 
FDTD results (e.g. [4]). 

Obviously, the transition air-PML puts a constraint on 
the minimum values for Srr. The question is, whether the 
parasitic reflections are due to PML-specific characteris- 
tics or whether one is dealing with a more general FD 
phenomenon here. This is clarified in the next section. 

VI. DEPENDENCEONDISCRETIZATION 

As the last remaining parameter to be investigated, the 
discretization in z-direction is varied, Fig. 7 provides the 
results. 

0.01 ;+Sll (two ports), 

0.01 0.1 

Azlmm 

Fig. 7 Input reflection Sr, of a partly PML filled waveguide 
according to Fig. 3 as a function of mesh size AZ; results for both 
one-port and two-port case (rtr,=O.OOO1, overall length of PML 
unchanged for all cell sizes,f-1OGHz.). 

The residual reflection level scales with Az2 and con- 
verges to the limits as expected, i.e. Srr + 0 for the two- 
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port, and St, + 0.0001 = rth for the one-port case. In other 
words, increased spatial resolution improves description of 
the PML interface thus reducing residual reflections. 

VII. ANALYTICDESCRIPTION 

The PML material involves two peculiarities of interest 
here: the presence of both electric and magnetic losses; 
which is an artificial setting, and a change of both permit-, 
tivity and permeability at the interface, which can occw 
for physical structures as well. 

In order to check this, the simplest case of a discontinu- 
ity in both E, and l& (both of them being purely real) is 
considered. We again use the parallel-plate waveguide of 
Fig. 3, but replacing the former PML area by a material 
with real permittivity and permeability values of 
~=~=4.0. Thus, the characteristic impedance remains 
unchanged, we have zero reflection theoretically, and any 
reflections observed can be attributed to the interface. 

Tab. I presents the results of the FDFD calculation. Re- 
flections in the range -3O..-50 dB are observed, also for 
the non-PML substrates. 

Table I Reflection coefftcient of the structure in Fig. 3, with 
PML and with PML region replaced by lossless substrate 
(&=h=4.0): FDFD results and analytical model of eqn. (3). 

We conclude from this that residual reflections are not a 
PML-inherent effect but related to the simultaneous 
change of E and lt, which also occur at the interface be- 
tween PML and air (and PML sections of different con- 
ductivity). The principal reason is known. It is the stag- 
gered grid of the Yee scheme. Usually, the electric field 
grid is used to formulate the equations and to define the 
material properties, which can lead to accuracy problems 
when including steps in permeability, which basically is 
defined within the staggered magnetic cells. 

As result of a systematic investigation we find empiri- 
cally that the following formula describes the observed 
reflection errors with good accuracy: 

with E~ to be replaced by the complex term E, - jKI(m) 
for the PML case. As can be seen from the data in Tab. I, 

the residual reflections caused by the interface can be 
estimated with excellent accuracy. Hence eqn. (3) pro- 
vides a helpful tool for the practitioner in the field how to 
choose discretization and PML parameters in order to 
meet a desired maximum level of reflection errors. Further 
work is in progress, to develop PMLs optimized with 
regard to the theoretical reflection coefficient and the 
given reflection at the interface. 

VIII. CONCLUSIONS 

Our results on the PML implementation into the 3D- 
FDFD method can be summarized as follows: Using the 
anisotropic PML formulation one achieves reflection er- 
rors below -40.. . -5OdB, which is sufficient for most prac- 
tical situations. 

But, this value represents a lower limit that cannot be 
overcome simply by varying the common PML parame- 
ters, i.e., nominal reflection factor, number of layers, and 
conductivity profile. The only way to reduce the reflection 
error is to refine discretization. This, however, is computa- 
tionally expensive. 

A simple test structure is used to explore PML accuracy 
in detail. We find that the reflections originate at the inter- 
face between PML and non-PML area, which involves a 
discontinuity in both complex E and p. This causes prob- 
lems with regard to the staggered grid. 

An estimation formula, valid for real and complex im- 
pedance steps, is found, to predict the magnitude of these 
reflections. Further work is in progress to find optimum 
constitutive parameters for the FDFD PML. 
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